32 research outputs found

    Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network

    Full text link
    Methods based on convolutional neural network (CNN) have demonstrated tremendous improvements on single image super-resolution. However, the previous methods mainly restore images from one single area in the low resolution (LR) input, which limits the flexibility of models to infer various scales of details for high resolution (HR) output. Moreover, most of them train a specific model for each up-scale factor. In this paper, we propose a multi-scale super resolution (MSSR) network. Our network consists of multi-scale paths to make the HR inference, which can learn to synthesize features from different scales. This property helps reconstruct various kinds of regions in HR images. In addition, only one single model is needed for multiple up-scale factors, which is more efficient without loss of restoration quality. Experiments on four public datasets demonstrate that the proposed method achieved state-of-the-art performance with fast speed

    Learning a Mixture of Deep Networks for Single Image Super-Resolution

    Full text link
    Single image super-resolution (SR) is an ill-posed problem which aims to recover high-resolution (HR) images from their low-resolution (LR) observations. The crux of this problem lies in learning the complex mapping between low-resolution patches and the corresponding high-resolution patches. Prior arts have used either a mixture of simple regression models or a single non-linear neural network for this propose. This paper proposes the method of learning a mixture of SR inference modules in a unified framework to tackle this problem. Specifically, a number of SR inference modules specialized in different image local patterns are first independently applied on the LR image to obtain various HR estimates, and the resultant HR estimates are adaptively aggregated to form the final HR image. By selecting neural networks as the SR inference module, the whole procedure can be incorporated into a unified network and be optimized jointly. Extensive experiments are conducted to investigate the relation between restoration performance and different network architectures. Compared with other current image SR approaches, our proposed method achieves state-of-the-arts restoration results on a wide range of images consistently while allowing more flexible design choices. The source codes are available in http://www.ifp.illinois.edu/~dingliu2/accv2016

    Hypernetwork functional image representation

    Full text link
    Motivated by the human way of memorizing images we introduce their functional representation, where an image is represented by a neural network. For this purpose, we construct a hypernetwork which takes an image and returns weights to the target network, which maps point from the plane (representing positions of the pixel) into its corresponding color in the image. Since the obtained representation is continuous, one can easily inspect the image at various resolutions and perform on it arbitrary continuous operations. Moreover, by inspecting interpolations we show that such representation has some properties characteristic to generative models. To evaluate the proposed mechanism experimentally, we apply it to image super-resolution problem. Despite using a single model for various scaling factors, we obtained results comparable to existing super-resolution methods

    Single Image Super-Resolution Using Lightweight CNN with Maxout Units

    Full text link
    Rectified linear units (ReLU) are well-known to be helpful in obtaining faster convergence and thus higher performance for many deep-learning-based applications. However, networks with ReLU tend to perform poorly when the number of filter parameters is constrained to a small number. To overcome it, in this paper, we propose a novel network utilizing maxout units (MU), and show its effectiveness on super-resolution (SR) applications. In general, the MU has been known to make the filter sizes doubled in generating the feature maps of the same sizes in classification problems. In this paper, we first reveal that the MU can even make the filter sizes halved in restoration problems thus leading to compaction of the network sizes. To show this, our SR network is designed without increasing the filter sizes with MU, which outperforms the state of the art SR methods with a smaller number of filter parameters. To the best of our knowledge, we are the first to incorporate MU into SR applications and show promising performance results. In MU, feature maps from a previous convolutional layer are divided into two parts along channels, which are then compared element-wise and only their max values are passed to a next layer. Along with some interesting properties of MU to be analyzed, we further investigate other variants of MU and their effects. In addition, while ReLU have a trouble for learning in networks with a very small number of convolutional filter parameters, MU do not. For SR applications, our MU-based network reconstructs high-resolution images with comparable quality compared to previous deep-learning-based SR methods, with lower filter parameters.Comment: ACCV201

    LIRA: Lifelong Image Restoration from Unknown Blended Distortions

    Full text link
    Most existing image restoration networks are designed in a disposable way and catastrophically forget previously learned distortions when trained on a new distortion removal task. To alleviate this problem, we raise the novel lifelong image restoration problem for blended distortions. We first design a base fork-join model in which multiple pre-trained expert models specializing in individual distortion removal task work cooperatively and adaptively to handle blended distortions. When the input is degraded by a new distortion, inspired by adult neurogenesis in human memory system, we develop a neural growing strategy where the previously trained model can incorporate a new expert branch and continually accumulate new knowledge without interfering with learned knowledge. Experimental results show that the proposed approach can not only achieve state-of-the-art performance on blended distortions removal tasks in both PSNR/SSIM metrics, but also maintain old expertise while learning new restoration tasks.Comment: ECCV2020 accepte

    Simple, Accurate, and Robust Nonparametric Blind Super-Resolution

    Full text link
    This paper proposes a simple, accurate, and robust approach to single image nonparametric blind Super-Resolution (SR). This task is formulated as a functional to be minimized with respect to both an intermediate super-resolved image and a nonparametric blur-kernel. The proposed approach includes a convolution consistency constraint which uses a non-blind learning-based SR result to better guide the estimation process. Another key component is the unnatural bi-l0-l2-norm regularization imposed on the super-resolved, sharp image and the blur-kernel, which is shown to be quite beneficial for estimating the blur-kernel accurately. The numerical optimization is implemented by coupling the splitting augmented Lagrangian and the conjugate gradient (CG). Using the pre-estimated blur-kernel, we finally reconstruct the SR image by a very simple non-blind SR method that uses a natural image prior. The proposed approach is demonstrated to achieve better performance than the recent method by Michaeli and Irani [2] in both terms of the kernel estimation accuracy and image SR quality

    W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping

    Full text link
    In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) images, one can either use microscopy techniques, such as structured-illumination microscopy (SIM), or apply denoising and super-resolution (SR) algorithms. However, the former option requires multiple shots that can damage the samples, and although efficient deep learning based algorithms exist for the latter option, no benchmark exists to evaluate these algorithms on the joint denoising and SR (JDSR) tasks. To study JDSR on microscopy data, we propose such a novel JDSR dataset, Widefield2SIM (W2S), acquired using a conventional fluorescence widefield and SIM imaging. W2S includes 144,000 real fluorescence microscopy images, resulting in a total of 360 sets of images. A set is comprised of noisy low-resolution (LR) widefield images with different noise levels, a noise-free LR image, and a corresponding high-quality HR SIM image. W2S allows us to benchmark the combinations of 6 denoising methods and 6 SR methods. We show that state-of-the-art SR networks perform very poorly on noisy inputs. Our evaluation also reveals that applying the best denoiser in terms of reconstruction error followed by the best SR method does not necessarily yield the best final result. Both quantitative and qualitative results show that SR networks are sensitive to noise and the sequential application of denoising and SR algorithms is sub-optimal. Lastly, we demonstrate that SR networks retrained end-to-end for JDSR outperform any combination of state-of-the-art deep denoising and SR networksComment: ECCVW 2020. Project page: \<https://github.com/ivrl/w2s

    eCNN: A Block-Based and Highly-Parallel CNN Accelerator for Edge Inference

    Full text link
    Convolutional neural networks (CNNs) have recently demonstrated superior quality for computational imaging applications. Therefore, they have great potential to revolutionize the image pipelines on cameras and displays. However, it is difficult for conventional CNN accelerators to support ultra-high-resolution videos at the edge due to their considerable DRAM bandwidth and power consumption. Therefore, finding a further memory- and computation-efficient microarchitecture is crucial to speed up this coming revolution. In this paper, we approach this goal by considering the inference flow, network model, instruction set, and processor design jointly to optimize hardware performance and image quality. We apply a block-based inference flow which can eliminate all the DRAM bandwidth for feature maps and accordingly propose a hardware-oriented network model, ERNet, to optimize image quality based on hardware constraints. Then we devise a coarse-grained instruction set architecture, FBISA, to support power-hungry convolution by massive parallelism. Finally,we implement an embedded processor---eCNN---which accommodates to ERNet and FBISA with a flexible processing architecture. Layout results show that it can support high-quality ERNets for super-resolution and denoising at up to 4K Ultra-HD 30 fps while using only DDR-400 and consuming 6.94W on average. By comparison, the state-of-the-art Diffy uses dual-channel DDR3-2133 and consumes 54.3W to support lower-quality VDSR at Full HD 30 fps. Lastly, we will also present application examples of high-performance style transfer and object recognition to demonstrate the flexibility of eCNN.Comment: 14 pages; appearing in IEEE/ACM International Symposium on Microarchitecture (MICRO), 201

    Perceptual Losses for Real-Time Style Transfer and Super-Resolution

    Get PDF
    We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results
    corecore